
Programmeerist
toetav õpetamine

ülikoolis
Vesal Vojdani

PLAS Seminar

Tegemist on siin minu katsega aru saada, miks minu enda
laps ja paljud minu õpilased “sügavalt” ei programmeeri.
Kõigepealt alustasin mainstream allikatest ja siis arvuti-
teaduse spetsiifilist kirjandust. Slaidide lõpus on lisatud

mõned järeldused.

Õ
pp

is
im

e

Ülikoolis õppijate osakaal potentsiaalsetest minejatest 
(kõik ülikoolis õppijad / elanikkond vanusel 18-23)

Õ
pe

ta
m

e

Tudengite Mitmekesisus
“The Robert and Susan Problem”

Robert Downey, Jr. (CC BY-SA 2.0) by Gage Skidmore Susan Boyle (CC BY-SA 3.0) by Wasforgas

Tubli, töökas, motiveeritud
“sügav õppĳa”

Tahab lihtsalt ainest  
läbi saada…

https://www.flickr.com/photos/gageskidmore/14800476884/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/people/gageskidmore/
https://commons.wikimedia.org/wiki/File:Susan_Boyle.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://commons.wikimedia.org/wiki/User:Wasforgas

6 Effective teaching and learning for today’s universities

• the students’ levels of engagement in relation to the level of learning
activity required to achieve the intended learning outcomes (ranging from
‘describing’ to ‘theorizing’, as between the dashed lines in Figure 1.1;

• the degree of learning-related activity that a teaching method is likely to
stimulate;

• the academic orientation of the students.

Point A is towards the ‘passive’ end of the teaching method continuum,
where there is a large gap between Susan’s and Robert’s levels of engage-
ment. A lecture would be an example of such passive teaching and we get the
picture just described: Susan working at a high level of engagement within
the target range of learning activities (relating, applying and theorizing
from time to time), Robert taking notes and memorizing, activities that are
below the target range of activities. If you compare this with Figure 2.1
(on p. 29), you will see that Susan is using a ‘deep’ approach, comprising
learning activities appropriate to the outcomes, while Robert is using a
‘surface’ approach, meaning that he is operating below the cognitive level
required.

At point B, towards the ‘active’ end of the teaching method continuum, the
gap between Susan and Robert is not so wide. Robert is actually using many of

Figure 1.1 Student orientation, teaching method and level of engagement

22831.indb 622831.indb 6 6/15/11 2:11 PM6/15/11 2:11 PM

Põhiküsimus:
Kuidas õpetada nii, et Robert õpiks nagu Susan?

Ken Baini küsimus

• Millal te viimati õppisite midagi
väga sügavalt?

• (Kas programmeerimisega
seoses midagi meenub?)

• Nüüd see küsimus: mis olid
need tingimused/eeldused,
mis viisid selleni?

Motivatsiooni valem
P(edukus) on subjektiivne usk, et saab hakkama!

𝖮𝗅𝗎𝗅𝗂𝗌𝗎𝗌 × P(𝖾𝖽𝗎𝗄𝗎𝗌)

AKTs meeldib paljudele
tudengitele just lõplike

automaatide osa!

Isegi motiveeritud õppĳa…
Ronja jälgib väga hästi juhendit, aga ei õpi sügavalt!

Ei ole asjast aru saanud, kui…
Esimese tsükli teeb kohe ära, aga siis kulub >30min

ja 75 vihjet, et esimest kõrvitsat ei jätaks vahele

(Üks vihje on andestatav: tädi
võib peale ülesanne täitmist
edasi liikuda, aga seda on ka

varem siin keskkonnas olnud.)

Miks ei õpita sügavalt?

• Ken Bain süüdistab koolisüsteemi, mis tingib neid
pealiskaudselt õppima.

• Neljaaastased on uudishimulikud ja naudivad õppimist. 
Neil on sisemine motivatsioon.

• Koolis aga õpetatakse hinnete ja testide järgi õppima.

• Hindamine peab soosima sügavam õppimine.

A Systematic Review of the Use of Bloom’s Taxonomy
in Computer Science Education

Susana Masapanta-Carrión
Pontificia Universidad Católica del Ecuador

Quito, 17012184, Ecuador
smmasapanta@puce.edu.ec

J. Ángel Velázquez-Iturbide
Universidad Rey Juan Carlos
28933 Móstoles, Madrid, Spain

angel.velazquez@urjc.es

ABSTRACT
Bloom’s taxonomy is a model that allows characterizing
students’ learning achievements. It is frequently used in
computer science education (CSE), but its use is not
straightforward. We present a systematic review conducted to
know actual use of the taxonomy in CSE. We found that it was
mostly used in programming education and to assess students’
performance. A more relevant contribution is a classification of
authors’ difficulties. In particular, the most often reported
difficulty is determining the level of the taxonomy where an
assessment task can be classified. In addition, we present
authors’ hypotheses about possible causes of the difficulties
and the solutions they adopted.

CCS CONCEPTS
• Social and professional topics~Computer science
education

KEYWORDS
Computer science education; Bloom’s taxonomy; difficulties.

ACM Reference format:
S. Masapanta-Carrión, and J. Á. Velázquez-Iturbide. 2018. A
systematic review of the use of Bloom’s taxonomy in computer
science education. In Proceedings 49th ACM Technical
Symposium on Computing Science Education, Baltimore, MD,
USA, February 2018 (SIGCSE '18), 6 pages.
https://doi.org/10.1145/3159450.3159491

1. INTRODUCTION
Bloom’s taxonomy is a model that allows characterizing
students’ learning achievements. According to Bloom et al. [3],
learning objectives are “explicit formulations of the ways in
which students are expected to be changed by the educative
process”. The original taxonomy [3] establishes hierarchy of
six levels of learning. The revised taxonomy [1] does not
establish a strict hierarchical relation between levels and it
differentiates two dimensions. The cognitive process
dimension is similar to the original taxonomy, whereas the

knowledge dimension classifies the knowledge the student is
expected to achieve.

Bloom’s taxonomy is probably the most widely used
taxonomy to state learning goals in computing studies. Even
curricular recommendations by ACM/IEEE specify learning
goals by means of the revised version of Bloom’s taxonomy
(more faithfully in the 2008 edition [4] and in a simplified way
in the 2013 edition [6]).

However, some authors reported that the use of the
taxonomy was problematic. For instance, different instructors
may classify a given exercise at different levels of the
taxonomy. Actually, the second author used Bloom’s taxonomy
in the past but, in spite of the taxonomy appeal, he found
difficulties of use [10]. A few years later, a working group was
created at the ITiCSE 2007 conference. In its final report [6],
the group includes a comprehensive review of academic
literature on different learning taxonomies, their use in
computer science education (CSE) and their associated
problems. The working group also proposed a new taxonomy
that could be used in programming courses. However, the
review of problems reported on the use of the taxonomy was
not exhaustive.

Britto and Usman made a systematic review of the use of
Bloom’s taxonomy in software engineering education [4].
However, their analysis is descriptive and does not deepen, at
least, in difficulties of use of the taxonomy.

The goal of this work is to expand knowledge of difficulties
reported by authors using Bloom’s taxonomy for CSE. The
structure of the paper is as follows. In Section II, the
methodology used for the systematic review is described.
Section III presents answers to research questions, according to
the review. Finally, Section IV contains a brief discussion of
our findings and Section V summarizes our conclusions.

2. METHODOLOGY
In this section, we describe in detail the process followed for
the systematic review. We followed the guidelines proposed by
Barbara Kitchenham [12].

2.1 Research Questions
The following research questions were formulated:

RQ1. What version of Bloom’s taxonomy was used?
RQ2. Is any other learning taxonomy used?
RQ3. In what subject matters is Bloom’s taxonomy used?
RQ4. What is the purpose of using Bloom’s taxonomy?
RQ5. Did the authors report any difficulty of use of Bloom’s

taxonomy? In the affirmative case, what difficulties?

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02…$15.00
https://doi.org/10.1145/3159450.3159491

Paper Session: Curriculum Issues #1 SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

441

Õpiväljund/hindamine
Pean aru saada, mis see täpselt on,

mida ma tahan (siiamaani edutult) õpetada.

https://dl.acm.org/citation.cfm?id=3159491

Kuidas hinnata sügavust?
Sul on kahte liiki pakendid (6 muna ja 8 muna)

Kuidas osta n muna võimalikult väheste pakenditega?

public static int minCartons(int n) {
 for (int big = n/4; big >= 0; big--) {
 int small = (n - big*4) / 3;
 if (big * 4 + small * 3 == n) {
 return small + big;
 }
 }
 return -1;
}

Remember Understand Apply Analyze Evaluate Create

Praktikumis lahendasime:
Sul on kahte liiki pakendid (3 muna ja 4 muna)

Kuidas osta n muna võimalikult väheste pakenditega?

 153

same in all subjects, from art history to zoology. However,
taxonomies are not simple to use and researchers find it hard to
reach agreement on the classification of items, which limits their
benefits to instructors [27]. This paper reports the work of an
ITiCSE Working Group investigating the hypothesis that the
hierarchy of learning outcomes in computer science is not well
captured by existing generic taxonomies and that computer
science education would be better served by the development of
a computer science-specific taxonomy.

1.2 What is an educational taxonomy?
A taxonomy is a classification system that is ordered in some
way. Linnaeus’s taxonomy arranged living organisms into a tree-
structured hierarchy. This gave biologists a tool to help them
understand the relationship between members of the plant and
animal kingdoms and to communicate accurately about them [7].
Taxonomies of educational objectives can similarly be used to
provide a shared language for describing learning outcomes and
performance in assessments. Unlike the biological taxonomy,
educational taxonomies are not usually tree-structured. To a
greater or lesser extent they divide educational objectives into
three domains, cognitive, affective and psychomotor. Some, such
as Bloom’s taxonomy, treat each of these as a one-dimensional
continuum [7], others, like the revised Bloom’s taxonomy,
describe the cognitive domain using a matrix [3]. Yet others,
like the SOLO taxonomy, use a set of categories that describe a
mixture of quantitative and qualitative differences between the
performance of students [5] and there are also taxonomies that
claim they can be applied equally to all three domains.

1.3 What taxonomies are used for
Learning taxonomies describe and categorize the stages in
cognitive, affective and other dimensions that an individual may
be at as part of a learning process. Paraphrasing Biggs [6], we
can say that they help with “understanding about understanding”
and “communicating about understanding”. Thus learning
taxonomies can be seen as a language which can be used in a
variety of educational contexts.

Learning taxonomies can be used to define the curriculum
objectives of a course, so that it is not only described on the
basis of the topics to be covered, but also in terms of the desired
level of understanding for each topic [48]. Computing programs
accredited by ABET have to be specified in terms of measurable
objectives, including expected outcomes for graduates [14].
More generally, the use of learning outcomes is mandated in the
countries of the European Higher Education Area [1,8,68] and is
increasingly prevalent in the US and elsewhere [15].

Learning taxonomies are widely used to describe the learning
stages at which a learner is operating for a certain topic. For
example, a student may be capable of reciting by heart what
recursion is but not capable of implementing a recursive
algorithm. An instructor may aim to have his or her students
learn a topic at a certain level in a taxonomy (e.g. students may
be expected to be able to comprehend the concept of recursion
without necessarily applying it). Once this has been done, the
instructor can assess students at the chosen level through a
suitable choice of questions or examples [39]. This approach is
encouraged by teacher-trainers [26]. Furthermore, the students’
answers can be analyzed as belonging to one level or another;
such answers can help the instructor revise his or her teaching

techniques to better guide students to accomplish a certain
learning stage.

Learning taxonomies have been used in many other contexts,
such as introducing students to a learning taxonomy to raise
their awareness and improve their level of understanding and
their studying techniques [16,71]. They are also used to
structure exercises in computer-based and computer-assisted
instruction [21,36].

1.4 Weaknesses of taxonomies from a CS
standpoint
Learning taxonomies, particularly Bloom’s taxonomy of the
cognitive domain, have had a considerable impact on curriculum
and assessment design in the last fifty years. However, this does
not mean that their use is unproblematic. The classification of a
specific learning outcome or test item depends on its context. A
task that challenges the analysis and synthesis skills of a
beginner becomes routine application of knowledge for a more
advanced learner. Similarly, a student who has been taught how
to solve a problem that is extremely similar to the test item will
demonstrate skills lower in the taxonomic order than one who is
solving it from first principles. This is a generic problem but
computer science-specific difficulties also manifest themselves.

Johnson and Fuller [27] found that colleagues disagreed about
the relative difficulty of cognitive tasks in computer science. A
significant proportion felt that it is easier to apply knowledge to
solve simple problems than to describe this knowledge. They
also found that computer science instructors did not find the
terms synthesis and evaluation useful in describing learning
outcomes and assessment tasks for programming courses,
especially at the introductory level, instead seeing the
application of knowledge as the highest skill that they should be
developing. Close questioning revealed that application, as used
by these colleagues, did in fact subsume analysis, synthesis and
evaluation, leading Johnson and Fuller to propose a revised
taxonomy with higher application as the highest level.

Lahtinen’s recent work [37] shows that the ordering of cognitive
tasks in Bloom’s taxonomy is a very poor fit for the learning
trajectories of some students tackling programming for the first
time. In addition, the use of taxonomies is concentrated on the
cognitive domain, even though learning in the affective domain
is also essential for the formation of computer science
practitioners. These problems led the working group to
investigate whether a subject specific taxonomy would be of
more use to computer science instructors than the existing
generic ones.

1.5 Methodology
In order to investigate this hypothesis, our working group has
reviewed a number of taxonomies described in the educational
literature, together with the range of uses to which they are put.
We have also reviewed studies in the computer science
education research literature that use one or more taxonomies as
an analytic tool. In addition we have looked at the practice of
assessment in computer science both for novice programming
and in two other typical subject areas, drawing on the experience
of members of the working group and their colleagues. We have
used this evidence to propose a new, computer science-specific
taxonomy and to make recommendations about how it might be
used. We concentrated on the cognitive domain because that is

 152

Developing a Computer Science-specific

Learning Taxonomy
Ursula Fuller

Computing Laboratory
University of Kent

Canterbury CT2 7NF
United Kingdom

U.D.Fuller@kent.ac.uk

Colin G. Johnson

Computing Laboratory
University of Kent

Canterbury CT2 7NF
United Kingdom

C.G.Johnson@kent.ac.uk

Tuukka Ahoniemi

Institute of Software Systems
Tampere University of Technology

Tampere, Finland

tuukka.ahoniemi@tut.fi

Diana Cukierman

School of Computing Science
Simon Fraser University

Burnaby, British Columbia
Canada

diana@cs.sfu.ca

Isidoro Hernán-Losada

Lenguajes y Sistemas Informáticos
Universidad Rey Juan Carlos

Madrid
Spain

Isidoro.hernan@urjc.es

Jana Jackova

Faculty of Management Science
and Informatics

University of Zilina /Slovak
University of Technology
Zilina, Slovak Republic

Jana.Jackova@fri.uniza.sk

Essi Lahtinen

Institute of Software Systems
Tampere University of Technology

Tampere
Finland

essi.lahtinen@tut.fi

Tracy L. Lewis

Information Technology
Radford University
Radford, VA 24142

USA

Tlewis32@radford.edu

Donna McGee Thompson

Student Learning Commons
Simon Fraser University

Burnaby, British Columbia
Canada

dmcthomp@sfu.ca

Charles Riedesel

Computer Science & Engineering
University of Nebraska Lincoln

259 Avery Hall
Lincoln, Nebraska 68588-0115

USA

riedesel@cse.unl.edu

Errol Thompson

Massey University
Wellington

New Zealand

kiwiet@computer.org

ABSTRACT
Bloom’s taxonomy of the cognitive domain and the SOLO
taxonomy are being increasingly widely used in the design and
assessment of courses, but there are some drawbacks to their use
in computer science. This paper reviews the literature on
educational taxonomies and their use in computer science
education, identifies some of the problems that arise, proposes a
new taxonomy and discusses how this can be used in
application-oriented courses such as programming.

Keywords
Computer science education, taxonomies of learning, curricula,
assessment, credit transfer, benchmarking

Categories and Subject Descriptors
K.3.2 Computer and Information Science Education

General Terms
None

1. INTRODUCTION

1.1 Motivation
Educational taxonomies are a useful tool in developing learning
objectives and assessing student attainment. They can also be
deployed in educational research, for example to classify test
items and investigate the range of learning these are measuring.
The well-known educational taxonomies are generic and rely on
the assumption that the hierarchy of learning outcomes is the

Arvutiteaduse mõtlemistasandid
ITiCSE töörühm üritasid välja töötada taksonoomia,

millega aru saada programmeerija arengut

https://dl.acm.org/citation.cfm?id=1345438

Nende taksonoomia
Loomine ja arusaamine olevat “semi-independent”

 164

Although a review of the literature reveals a wide range of
possible candidates, only Bloom’s taxonomy of the cognitive
domain appears to be widely used in computer science course
and assessment design. Its main strengths are that the levels are
reasonably easy to understand and there is a developing
literature, reviewed above, on how to use it to devise test items.
Thus we felt it would form the most natural basis for our
proposed taxonomy.

We used the revised version of Bloom’s taxonomy [6] which
responded to problems with the linear approach at the higher
levels. It provides a level of creation (Higher Application) which
requires competency at all the previous levels and one that does
not (Create). In order to visualize this distinction and the semi-
independent skills of reading and writing program code, our
taxonomy employs a two dimensional matrix with an adaptation
of Bloom’s taxonomy which is presented in Figure 2.

Figure 2. A graphical presentation of the two dimensional

adaptation of Bloom’s taxonomy.

The dimensions of the matrix represent the two separate ranges
of competencies: the ability to understand and interpret an
existing product (i.e. program code), and the ability to design
and build a new product. Levels related to interpretation are
placed on the horizontal axis and levels related to generation are
placed on the vertical axis, with the lowest levels at the lower
left corner. The names of the levels are from the revised version
of Bloom’s, as we feel they are sufficiently unambiguous. It is
understood that students traverse each axis in strict sequence.
For example, it is not possible to begin to do synthesis (Create)
until there is some degree of competency through the Apply
Level.

6.1.1 Applying the taxonomy – traversing the

matrix
The matrix should be especially useful for instructors needing a
marking grid for their students. Also it rather clearly illustrates
all the different learning paths students may take, as discovered
in recent work by Lahtinen [37].

Different students take different "learning paths" in the matrix
taxonomy. For instance, when a student learns a new
programming concept he first achieves the knowledge of this
concept. At that point the student is in the cell (the state of)
"none/Remember" shown in Figure 2. If this student continues
with learning by imitating a ready example of a program but
without deep understanding of the concept, they will achieve

the state "Apply/Remember", i.e. applying/trying to apply the
concept without real understanding, with trial and error. This
behaviour is illustrated in Figure 3. If instead of imitating, the
student decides to first find more information on this concept, as
from a book, they might proceed to the cell "none/Understand"
to the right of the initial cell. This means that the student is not
yet able to produce program code, but he might already
understand the meaning behind this concept.

A competent practitioner of a concept would be placed in the
cell "Create/Evaluate", which means that he is able to perform at
all the competency levels in the matrix. This can also be
identified as the level Higher Application [27] and can be
reached through different paths as shown in Figure 6.

However, there are students who attain only some of the
competencies. For instance, the theoretical students identified in
a cluster analysis study [37] may be placed in the cell
"none/Evaluate" which means that they are able to read program
code, analyze, and even evaluate it, but cannot yet design a
solution or produce program code. This is not the most common
pathway for students to follow, but these students have only
proceeded in the horizontal direction as shown in Figure 4.

The same study revealed another group, called the practical
students, who could be placed in the cell "Create/Understand" of
the matrix. Being in that cell would indicate the ability to apply
and synthesize without the ability to analyse or evaluate even
their own program code. This behaviour is illustrated in Figure
5. The problem for these practical students is in not being able
to debug their own solutions when they encounter errors.

Figure 3. A student trapped in trial and error approach

Verbide liigitus
Relate: merge sort versus quicksort… 

Refaktoriseerimisel põhinevad hajutused võiks küll olla!

 166

Several of the solution activities may be amenable to assessment
using the SOLO taxonomy, which considers the organizational
complexity of the problem. This dimension is not at present
well illustrated by our matrix, though it may be expected that
SOLO levels generally increase as one goes from the origin to
the upper right. Consider the activity “present”: One would
prefer the ability of presentation at the relational level of SOLO
as opposed to uni- or multi-structural. “Design”, “relate”, and
“model” are other activities we have identified for which SOLO
is useful. In contrast, “implement” as defined in the table,
involves applying a process to an otherwise completed design,
and thus may be less related to skills involving complexity.

Many of the activities are related to the ability to work with
abstraction, an ability that is vital for computer programming
and has been discussed as an overriding argument for an
alternative learning taxonomy [33]. Design, model, refactor,
debug, and present may easily be seen to involve extensive
consideration of abstractions. As examples, these activities may
include as sub-activities the following: traversing levels of
abstraction, mapping between levels (precision being essential
for programming!), constructing new abstractions (with the
attendant requirements of retaining needed detail and
eliminating unneeded detail), adapting abstractions, and using
abstractions as models of the original problem and/or solution.

A subject of some discussion in this working group was how to
apply the matrix taxonomy to the affective domain. We have
designed this taxonomy only for the cognitive domain but non-
cognitive skills (e.g. social and emotional skills and the adoption
of professional standards) also play a major part in programming
practice. Internalization of professional practices is indeed an
essential component of learning for computer programmers.
Possibilities considered included extending the matrix in one or
both directions by another level, or devising a companion
matrix. Our overall feeling was that there is so little experience
in computer science of assessment of values and attitudes that
this would be premature. Krathwohl, Bloom and Masia’s
taxonomy for the affective domain [32] appears to be usable for
courses aiming to develop professional values and we would

like to encourage its adoption so that an evidence base can be
accumulated.

6.2 Applying Taxonomies Iteratively - a
Spiral Architecture for Applying a Learning
Taxonomy
Robins at al. describe a schema as “a structured chunk of related
knowledge” [63]. The student's learning goes through learning
new schemas, modifying and combining them in order to
produce new, more abstract schemas. Thus, the learning of
programming could be seen as an iterative process. In the very
beginning, the student is taught really simplistic and basic pieces
of information and places to apply them. Instead of learning
some things here and there, programming is a skill that is
learned by building new information on top of earlier
information. So in a way the basic pieces of information
students are first struggling with become the bits and pieces they
use in subsequent learning of new material. Compared to other
cyclic learning styles e.g. the experimental learning style
described by Kolb’s Learning Cycle [30], the idea here is to
proceed to a new level after each cycle.

The idea of a cognitive learning taxonomy can also be used in an
iterative, spiral way. When the student is learning the basic
concepts and the simplest subjects, he is going through the
taxonomy in respect of that subject only. After having created a
schema on that subject, he is then guided into a more abstract
subject. When looking only at this new subject, the student is
starting again from the lowest level of taxonomy—but now
using the earlier material as a prerequisite.

The spiral process could be applied to Bloom's taxonomy, in
that when the student is learning a new subject, his
prerequisites—the materials to use in building new
knowledge—have become his new basic knowledge, although
the student has perhaps reached the level Create or Evaluate on
those earlier subjects. Create could be described as the ability to
combine one subject with others in order to build new solutions.
This may also be seen when new solutions or subjects are learnt
by building upon and integrating previous knowledge. This is
easily seen to be true when considering that topics that are
difficult and require in-depth analyzing by students are mere
basic knowledge for expert programmers. Applying Bloom’s
taxonomy iteratively is illustrated in Figure 8.

Here is an example of a learning spiral: In the beginning a
programming student is taught how to use a loop structure. He
will go through all the levels of Bloom's taxonomy while
learning it. He knows that a loop can be used for iteration; he
understands how the loop works; he is able to apply a loop
when told etc., eventually learning it thoroughly. After reaching
the highest levels, the loop structure has become a tool for the
student to use in subsequent programming. As the student is
trying to learn how to sort an array, the loop can be seen as his
basis knowledge upon which he is building his new knowledge.
Later as the student is trying to implement a top-application1 to

1 The application that displays and updates sorted information

about the top CPU processes

Figure 7. Mapping programming activities to the Matrix

Õpilaste arenguteed
1) Ainult arusaamine (oskab juhendi järgi, palju abi vaja)

2) Ainult loomine (katse-eksitus, testid lähevad läbi…) 165

Figure 4. The pathway of the students who attain only

theoretical competencies.

Figure 5. The pathway of the students who attain only practical

competencies.

Figure 6. The goal, “Create/Evaluate” or Higher Application,

can be reached through different pathways.

Mapping Programming Activities to the Matrix

We provide a mapping from a set of computer programming
activities to the cells of the matrix in order to illustrate the
discriminatory power of the proposed taxonomy for this subject
area. This is done with a list of problem-solving activities
related to programming collected as a reaction to difficulties
encountered in using Bloom’s Taxonomy. The activities shown
in Table 1 are mapped to the cells of the taxonomy. See Figure
7.

Table 1 – A list of problem-solving activities related to
programming

Solution
Activity

Description

Adapt modify a solution for other domains/ranges

Analyse probe the [time] complexity of a solution

Apply use a solution as a component in a larger
problem

Debug both detect and correct flaws in a design

Design devise a solution structure

Implement put into lowest level, as in coding a
solution, given a completed design

Model illustrate or create an abstraction of a
solution

Present explain a solution to others

Recognize base knowledge, vocabulary of the domain

Refactor redesign a solution (as for optimization)

Relate understand a solution in context of others

Trace desk-check a solution

To “adapt” a solution probably requires competency close to
Create on the vertical scale and at least Understand on the
horizontal scale, because modifying involves production and
knowing what and how to modify requires understanding.
“Apply” in the meaning of Table 1 may be as high as Create on
the vertical axis since it calls for some creative ability, probably
more than implied by the Apply level, in spite of its name. The
position in the horizontal axis depends on the situation. To
“debug” calls for a collaboration of both interpretation and
building so should be high on both axes, perhaps in the cell
“Create/Analyse”. The ability to “design” naturally implies
Create on the vertical scale and likely some degree of
interpretation on the horizontal scale, though how much is
uncertain.

“Refactor” and “Relate” are shown at the highest level of
interpretation because both call for a deep understanding of the
context of the problem and solution. We view “refactoring” as
involving an improvement on the original design, thus admitting
a possible placement even higher than “design”.

To avoid belaboring the mapping example, we simply state that
similar reasoning inspired the placement of the remaining
activities. The point is that a mapping is feasible and does result
in a fairly complete covering of the grid. Furthermore, most of
these activities are general enough to be immediately applicable
to other fields of engineering.

Using Bloom’s Taxonomy To Code Verbal Protocols of
Students Solving a Data Structure Problem

Jennifer Parham
School of Computing
Clemson University
Clemson, SC 29634

+1 864 245 4177

jparham@g.clemson.edu

Donald Chinn
Computing and Software Systems
University of Washington, Tacoma

Tacoma, WA 98402-3100
+1 253 692 4660

dchinn@u.washington.edu

D. E. Stevenson
School of Computing
Clemson University
Clemson, SC 29634

+1 864 656 5880

steve@cs.clemson.edu

ABSTRACT
We describe a preliminary study exploring how computer science
students solve a problem in an attempt to understand differences
between the successful and the unsuccessful problem solver.
Students followed a verbal protocol as they solved a data
structures problem, and we analyzed the transcripts of these
problem-solving sessions, classifying the statements students
made using the revised Bloom’s taxonomy. Based on our analysis
in this case study, we conclude that the successful problem solver
seems to move more frequently from one type of cognitive
process to another than the unsuccessful problem solver. For the
particular data structure problem the students attempted to solve,
we observed that all problem solvers, successful or unsuccessful,
tend to follow patterns in their problem-solving process.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education: Computer science education. E.1 [Data
Structures]: Lists, stacks, and queues, trees. F.2.0 [Analysis of
Algorithms and Problem Complexity]: General.

General Terms
Human Factors.

Keywords
problem solving, computer science education, Bloom’s taxonomy.

1. INTRODUCTION
Both computing professors and industry leaders acknowledge the
need to give students in the computing sciences a real-world
perspective through problems requiring a wide-range of skills
[14]. However, even though the Association for Computing
Machinery (ACM) and the IEEE Computing Society (IEEE-CS)
recognize the necessity for problem solving in the computing
curricula [11], representatives of industry believe that universities
are not meeting this goal [32]. Some members of industry think
universities teach students to solve problems haphazardly by
rummaging for a solution rather than teaching them to understand
the processes required to reach a solution to a complex problem.
In Computing Curricula 2005, the most recent one published by
the ACM, the authors acknowledge problem solving without

providing instructors the details of how, what, and when to deliver
this knowledge to students. This disconnect is further
compounded by the fact that some researchers place importance
on such artifacts as proofs and on counterexamples resulting from
solving a problem rather than the history and process of how the
solutions were developed [25].

The theoretical framework for the research described here
addressing the details of the dynamics of problem solving is
centered on John Dewey’s book, How We Think. Dewey posited
that people construct thoughts through reflection and regulation
[12], and his work influenced Polya, who validated the
construction of thoughts in mathematical problem solving,
recognizing the specific processes involved [29]. Dewey and
Polya were among the first educational leaders to recognize
problem solving as a set of processes rather than one process
leading to a solution. Later, Robert Sternberg used the idea of
constructivism to develop his triarchic theory of intelligence,
providing a detailed breakdown of the mental processes used to
learn and solve general problems; subsequently, he used this
theory to compare expert and novice problem solvers [35].
Constructivism is now a well-established theory in which
individuals do not perceive the world directly but rather perceive
interpretations of it mediated by the interpretive frameworks
developed [33].

To explore this issue of constructivism and the dynamics of
problem solving, the research presented in this paper utilizes the
verbal protocol method in Ericsson and Simon’s book [15],
Protocol Analysis, to explain the relationships between students’
cognitive processes in solving a complex computer science
problem. The vocabulary of the revised Bloom’s taxonomy
provides a basis for determining differences among student levels
of cognitive processing, the results showing discrepancies in
Bloom’s cognitive domains among students able to solve a
complex data structure problem versus students unable to make
much progress toward a solution for the same problem. The
results from this continuing research may change the way people
view the storage, retrieval, and manipulation of knowledge in
computer science problem solving, thereby impacting pedagogy,
learning, and testing strategies at the university level.

2. RELATED WORK
While this preliminary research recognizes several taxonomies
created and applied to computer science [6, 19], it uses Bloom’s
taxonomy as a means for analysis of how students solve computer
science problems because it is the most widely accepted
educational taxonomy. In addition, there are many references in
the Handbook I: The Cognitive Domain of Bloom’s original

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM-SE’09, March 19–21, 2009, Clemson, SC, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

©2009 ACM 978-1-60558-421-8/09/03 ...$10.00

Huvitab taksonoomia kasutus
Mis tasandil toimub mõtlemine A&A ülesanne

lahendamisel?

https://dl.acm.org/citation.cfm?id=1566499

taxonomy based on the cognitive processes identified in his earlier
work analyzing college students responses when they were
instructed to think aloud while solving various problems [4, 5].
Therefore, this research study uses the “think aloud” method as a
foundation for exploring how college students solve computer
science problems, and as a starting point, the most recent
hierarchy and verbs from the cognitive domain in the revised
Bloom’s taxonomy serve as a tool for classifying students’
thought processes objectively [2, 18].

Most past research on Bloom’s taxonomy in computer science has
applied the framework to the classification of specific computer
science examples to establish a common vocabulary, focusing on
its application to pedagogy and assessment [31, 34, 36, 39]. Of
particular interest is Johnson and Fuller’s experiment showing a
disconnect between the classification of freshman computer
science test questions among educators and test writers [22]. The
computer science educators did not classify many, if any,
freshman test questions as meeting the higher-level educational
objectives of analysis, evaluation, and synthesis stated in Bloom’s
taxonomy. A second experiment of interest used Bloom’s and the
SOLO taxonomies to select questions for analysis of the effect the
cognitive level of a question has on the ability of a novice student
to answer; this group of researchers found that the cognitive level
of a multiple-choice computer science question is directly related
to the student’s ability to answer it correctly [39]. None of this
past research uses Bloom’s taxonomy as a means for
understanding, analyzing, and evaluating the cognitive processes
students use to solve a computer science problem. One of the few
studies in computer science analyzing how students solve
problems used Polya’s problem-solving framework to investigate
how students solve problems in data structures and algorithms.
Chinn et al. analyzed the verbal protocols to compare “good” and
“bad” problem solvers and to investigate how problem solving
ability correlates to grades in the course [8].

The foundation for the research presented here uses the Chinn et
al. study and Bloom’s use of college students thinking aloud,
which utilize techniques well-known in many disciplines
including cognitive psychology, physics, chemistry, mathematics,
education, business, artificial intelligence (AI), and human-
computer interaction (HCI) [7, 10, 38, 27, 9, 5, 17, 28, 30]. This
method yielded innovative assessment tools in physics [21] and
chemistry [37], and computer science researchers are beginning to
recognize a need for domain-specific transcripts and analysis [1].
Protocol Analysis defines verbalizations resulting from thinking
aloud as representations of subsets of sequences of thoughts that
reflect the states of heeded information even though these
thoughts do not describe the details of the information or why that
part of the information was heeded [15]. The authors
acknowledge that there are other methods for measuring cognitive
processes, such as EEG and eye tracking, but none claim to
capture all thoughts, including thinking aloud.

There are different verbal protocols for thinking aloud, such as
verbalizing while problem solving, reflecting on problem
statements or on solving a problem, lapsing time between
verbalizations, and asking participants to describe or explain their
verbalizations, and there are differences in the data resulting from
these protocols. Ericsson and Simon posit that people may have
unconscious thoughts while they are silent, that thinking aloud
captures only sequential thoughts, and that the combination of
verbal protocols and interviews help capture some of these

unconscious and parallel thoughts. Some researchers criticize
verbal protocols for disrupting normal cognitive behavior, but any
“online” method, which observes a person while performing a
task, can be disruptive to normal behavior [13]. This research
recognizes that the verbalizations from the data collected in this
study is from a combination of verbal protocols including
thinking aloud while solving a problem, as well as asking
participants to explain their thoughts or providing hints to
instigate participant progression towards the solution.

3. METHODOLOGY

3.1 Data Collection
Using the transcripts from the Chinn et al. study, 24 transcripts of
students who verbally solved sophomore level data structures and
algorithms problems were obtained from the University of
Washington, Tacoma, under IRB consent. For the purposes of this
research, we chose to analyze transcripts from the same problem
to explore how students solve a single computer science problem.
Therefore, we chose the transcripts from the first problem (7 total)
in the collection. The following is a version of problem 3.25 from
Weiss [40, p 97]:

“A stack is a standard data structure for which the following
operations are defined for it:
push(x): places object x on the stack
pop(): takes the topmost element off the stack and returns it
(if the stack is empty, then an error or exception is raised)
 A stack works like a pile of dishes where the only things
you can do to the pile is to put a dish on the top of the pile or
take a dish off the top of the pile.
 A stack is typically implemented using either an array or a
linked list. When a stack is implemented using a linked list,
both the push and pop operations can be performed in O(1)
time per operation. That is, the time it takes to execute a push
or pop operation is a fixed amount of time that is independent
of how many objects are in the stack when the operation is
performed.
 For simplicity, let us assume that the elements in our stack
consist of integers. We wish to create a data structure that not
only supports the standard stack operations (push and pop),
but also the operation findMinimum(), where findMinimum()
returns the smallest element in the stack. It is easy to modify
an implementation of a standard stack so that we can perform
push and pop in O(1) time and findMinimum in O(n) time.
However, we can do better.
1. Describe how you would implement this new data

structure so that all the operations (including
findMinimum) execute in O(1) time.

2. Explain what happens in each operation of your
implementation and why each operation runs in O(1)
time.”

3.2 Description of a Transcript
The students were instructed to think aloud while solving the
problem. If the student paused for more than a minute, then the
student was reminded to think aloud. The interviewer answered
questions and provided hints when the student appeared to have
difficulties. The transcripts contain statements identified as being
made by the interviewer or the student, and the lapsed time is
inserted into the statements every 30 seconds. In addition, pauses,

taxonomy based on the cognitive processes identified in his earlier
work analyzing college students responses when they were
instructed to think aloud while solving various problems [4, 5].
Therefore, this research study uses the “think aloud” method as a
foundation for exploring how college students solve computer
science problems, and as a starting point, the most recent
hierarchy and verbs from the cognitive domain in the revised
Bloom’s taxonomy serve as a tool for classifying students’
thought processes objectively [2, 18].

Most past research on Bloom’s taxonomy in computer science has
applied the framework to the classification of specific computer
science examples to establish a common vocabulary, focusing on
its application to pedagogy and assessment [31, 34, 36, 39]. Of
particular interest is Johnson and Fuller’s experiment showing a
disconnect between the classification of freshman computer
science test questions among educators and test writers [22]. The
computer science educators did not classify many, if any,
freshman test questions as meeting the higher-level educational
objectives of analysis, evaluation, and synthesis stated in Bloom’s
taxonomy. A second experiment of interest used Bloom’s and the
SOLO taxonomies to select questions for analysis of the effect the
cognitive level of a question has on the ability of a novice student
to answer; this group of researchers found that the cognitive level
of a multiple-choice computer science question is directly related
to the student’s ability to answer it correctly [39]. None of this
past research uses Bloom’s taxonomy as a means for
understanding, analyzing, and evaluating the cognitive processes
students use to solve a computer science problem. One of the few
studies in computer science analyzing how students solve
problems used Polya’s problem-solving framework to investigate
how students solve problems in data structures and algorithms.
Chinn et al. analyzed the verbal protocols to compare “good” and
“bad” problem solvers and to investigate how problem solving
ability correlates to grades in the course [8].

The foundation for the research presented here uses the Chinn et
al. study and Bloom’s use of college students thinking aloud,
which utilize techniques well-known in many disciplines
including cognitive psychology, physics, chemistry, mathematics,
education, business, artificial intelligence (AI), and human-
computer interaction (HCI) [7, 10, 38, 27, 9, 5, 17, 28, 30]. This
method yielded innovative assessment tools in physics [21] and
chemistry [37], and computer science researchers are beginning to
recognize a need for domain-specific transcripts and analysis [1].
Protocol Analysis defines verbalizations resulting from thinking
aloud as representations of subsets of sequences of thoughts that
reflect the states of heeded information even though these
thoughts do not describe the details of the information or why that
part of the information was heeded [15]. The authors
acknowledge that there are other methods for measuring cognitive
processes, such as EEG and eye tracking, but none claim to
capture all thoughts, including thinking aloud.

There are different verbal protocols for thinking aloud, such as
verbalizing while problem solving, reflecting on problem
statements or on solving a problem, lapsing time between
verbalizations, and asking participants to describe or explain their
verbalizations, and there are differences in the data resulting from
these protocols. Ericsson and Simon posit that people may have
unconscious thoughts while they are silent, that thinking aloud
captures only sequential thoughts, and that the combination of
verbal protocols and interviews help capture some of these

unconscious and parallel thoughts. Some researchers criticize
verbal protocols for disrupting normal cognitive behavior, but any
“online” method, which observes a person while performing a
task, can be disruptive to normal behavior [13]. This research
recognizes that the verbalizations from the data collected in this
study is from a combination of verbal protocols including
thinking aloud while solving a problem, as well as asking
participants to explain their thoughts or providing hints to
instigate participant progression towards the solution.

3. METHODOLOGY

3.1 Data Collection
Using the transcripts from the Chinn et al. study, 24 transcripts of
students who verbally solved sophomore level data structures and
algorithms problems were obtained from the University of
Washington, Tacoma, under IRB consent. For the purposes of this
research, we chose to analyze transcripts from the same problem
to explore how students solve a single computer science problem.
Therefore, we chose the transcripts from the first problem (7 total)
in the collection. The following is a version of problem 3.25 from
Weiss [40, p 97]:

“A stack is a standard data structure for which the following
operations are defined for it:
push(x): places object x on the stack
pop(): takes the topmost element off the stack and returns it
(if the stack is empty, then an error or exception is raised)
 A stack works like a pile of dishes where the only things
you can do to the pile is to put a dish on the top of the pile or
take a dish off the top of the pile.
 A stack is typically implemented using either an array or a
linked list. When a stack is implemented using a linked list,
both the push and pop operations can be performed in O(1)
time per operation. That is, the time it takes to execute a push
or pop operation is a fixed amount of time that is independent
of how many objects are in the stack when the operation is
performed.
 For simplicity, let us assume that the elements in our stack
consist of integers. We wish to create a data structure that not
only supports the standard stack operations (push and pop),
but also the operation findMinimum(), where findMinimum()
returns the smallest element in the stack. It is easy to modify
an implementation of a standard stack so that we can perform
push and pop in O(1) time and findMinimum in O(n) time.
However, we can do better.
1. Describe how you would implement this new data

structure so that all the operations (including
findMinimum) execute in O(1) time.

2. Explain what happens in each operation of your
implementation and why each operation runs in O(1)
time.”

3.2 Description of a Transcript
The students were instructed to think aloud while solving the
problem. If the student paused for more than a minute, then the
student was reminded to think aloud. The interviewer answered
questions and provided hints when the student appeared to have
difficulties. The transcripts contain statements identified as being
made by the interviewer or the student, and the lapsed time is
inserted into the statements every 30 seconds. In addition, pauses,

Minu enda mõttekäik
• Proovime lihtsalt miinimum ühes muutujas meelde jätta…

• OK, pop() puhul oleks eelmist vaja.

• Aga, hmm, äkki jätaks vanu meelde, et neil on siis ka oma
magasin (või viited esialgsesse, ah, teeme lihtsalt praegu)

• Kas siis tõesti kehtib see, et kui eemaldan element
mõlemast stack’ist, siis ta ongi ülejäänud stack’i vähim?

• JAAAAA, ahaaaaa, nad ongi ju lisamise järjekorra mõttes
kooskõlas, see ongi see invariant, jne…

whispers, and drawing on or pointing to scratch paper were
transcribed into text whenever they could be inferred from the
audio recording, and punctuation was inserted by the transcriber.
The following is an example of the transcript:

“(6:00) (6:30) [long pause] (7:00) [whispers]
[I] Again I’d like you to
[S] I’m sorry
[I] That’s ok. I don’t want to interrupt your thoughts but I do
want you to uh
[S] I’m just trying to look I’m trying to look at the problem
right now as a stack trying to think of a way to maintain what
the minimum is even with the popping operation but I think
this approach isn’t going to work. (7:30) In O(1) time means
you have to be able to jump right to it. [pause] A sorted list,
the elements would be (8:00) [long pause] [whispers] [pause]
Still looking for a way to do it [laugh]”

3.3 Transcript Analysis
The raw data consisted of 207 minutes of audio recording from
seven students who verbalized their thoughts while solving a
computer science problem. The transcribed data yielded a total of
37 single-spaced pages and 21,953 words. Initially, the data was
analyzed for general commonalities among the seven transcripts,
and after seeing a pattern in the cognitive processes and ability to
form a solution among the transcripts, the revised Bloom’s
taxonomy was used to code segments of the transcripts using the
verbal protocol analysis developed by Ericsson and Simon [15].
Using qualitative data from people thinking aloud and a mixed-
method analysis by means of a precise coding scheme and an
inter-rater reliability iteratively develops an objective vocabulary
of cognitive processes as well as misconceptions resulting from
these processes.

Each investigator began by segmenting the transcript into
complete thoughts. Then, based on a transcript from the student
who was most unsuccessful as an example, one investigator coded
the transcript using the verbs from the revised Bloom’s taxonomy
to use for a discussion and training tool. This process led to the
development of a rubric including a definition of each cognitive
domain along with general computer science examples and quotes
from the transcripts (see Table 1). Next, each investigator coded
20 minutes from the 30-minute transcript of a student successfully
solving the problem and used a detailed version of Table 1 for
independently re-classifying “complete thoughts” to reach inter-
rater reliability. An acceptable inter-rater reliability is greater than
80%, and the investigators in this research reached an 89% inter-
rater reliability based on 84 statements (see Figure 1).

Table 1. Example Rubric used to Classify Thought Processes
in Computer Science Problem Solving

Revised
Bloom’s

Taxonomy
Description Example Quotes from Transcript

“… you would have your basic array
list with a head and a tail and when
you want to push … you would just
find the last element…”

Remember

Retrieve
relevant

knowledge
from long-term

memory “you just have elements of each, an
integers I guess and either an array
or the nodes that you have in the
list.”

“Well um … number one is describe
how you would implement the new
data structure so that all operations
including find minimum execute in
O(1) time.”

Understand

Construct
meaning from
instructional
messages, i.e.
oral, written,
and graphic “In O(1) time means you have to be

able to jump right to it.”
“Then we insert a 9 into the list.”

Apply

Carry out or
use a procedure “If I just had a head node, and the 5

gets pushed onto the stack…”
“Is there some kind of data structure
that I should be using other than
this, other than the linked list?”

Analyze

Break material
into its

constituent
parts and

determine how
the parts relate

“… because my next field would be
already taken.”

“The point was to keep the data
structure, the data organized.”

Evaluate

Make
judgments
based on

criteria and
standards

“That would take up too much
space.”

“Now I am trying a different kind of
one with the elements before it was
smaller, so as I enter a 5…”

Create

Put elements
together;

reorganize
elements into a
new pattern or

structure

“I need to insert these in the right
order, because it should be going to
the front of the list not the back.”

3.4 Weaknesses
There are several weaknesses in the methodology used in this
research, for example, the concerns researchers have about
qualitative analysis, the small sample size, the lack of an interview
to determine some of the unconscious and parallel thoughts, the
length of time allowed between verbalizations, and the use of
Bloom’s taxonomy as a coding scheme. The revised Bloom's
taxonomy is difficult to apply to computer science and is
incomplete for the domain. Bloom, who recognized these
weaknesses in his original taxonomy, suggests creating new
categories and adapting the ontology for specific domains [4]. In
future studies, the participants will be interviewed and allowed
only 10 seconds rather than 1 minute between verbalizations
before being reminded to think aloud.

To address the concerns about qualitative research, there are
several articles establishing this type of research in computer
science education [16, 20] and HCI [3, 30], as well as the
American Mathematical Society’s recently published book by
researchers and educators arguing the need for qualitative research
methods in mathematics [26]. Sample sizes in qualitative research
depend on the amount of qualitative data, and HCI published an
article presenting the ratio of amount of data to man-hours for
analysis leading to small sample sizes [30]. Due to such obstacles
as time constraints, funding, participant availability, and
demographics, sample sizes range from 1 to 99 with an average
sample size of 22 in qualitative research [24], and other well-
known research in mathematics and physics have used sample
sizes of 4, 10, and 40 [23].

4. OBSERVATIONS
Our initial qualitative measures were based on whether a student
designed or wrote on paper, wanted to write code to solve the

Tudengite mõtteid liigitati
See on nüüd ainult 7 tudengi põhjal…

I

I I

I

I
II

1
2
3
4
5
6

:3
0

2:
30

4:
30

8:
00

9:
00

9:
30

11
:0

0

13
:3

0

15
:0

0

16
:0

0

17
:0

0

19
:3

0

20
:3

0

21
:3

0

22
:3

0

24
:0

0

25
:0

0

27
:0

0

27
:3

0

28
:0

0

28
:3

0

30
:0

0

Time (minutes:seconds)
B

lo
o

m
's

T
a
x
o

n
o

m
y

Figure 1 Overall Trend and Inter-Rater Reliability for the Classification of Cognitive Processes Reaching a Correct Solution.

problem, worked through examples, engaged in solution
monitoring, and progressed toward the solution with the help of
the interviewer. The analysis of the seven transcripts revealed
the following:
• 4 out of 7 designed or wrote on paper
• 4 out of 7 expressed interest in writing code
• 6 out of 7 worked examples and monitored solutions
• 3 out of 7 required outside help/hints to progress

In addition to these insights, we found a pattern in the starting
place and use of a data structure in the progression toward a
solution, and the further a student progressed correlated to these
insights. Less than 50% of the students described the details of
the stack, and only one described the nodes in a linked list. All
students began solving the problem of finding the minimum
value in constant time, O(1), by proposing the simplest data
structure to hold the minimum value, i.e. a single variable, and
every student understood why this solution did not work. After
realizing a single variable will not work, one student proposed
using a second stack of minimum values, while five of the seven
proposed using a second array with the minimum values sorted.
The student proposing the second stack with minimum values
solved findMinimum() in O(1) without ever mentioning sorted
values, which is unnecessary and violates O(1), or without
making any references to new in the problem statement. Three
students did refer to new in the problem statement, and one
student thought “outside the box” in order to modify the
standard stack learned in class to find the minimum in O(1),
whereas the student with the other correct solution created a
second familiar data structure. Below, we present different
features of the problem-solving process for the given problem,
the number in the parentheses indicating how many of the 7
transcripts contained the following features in the solution:

1. Proposed using a stack (7)
1.1. Proposed using a linked list (2)

1.1.1. Described the nodes, i.e. pointers (1)
1.2. Proposed using an array (1)

2. Described push operation in O(1) (7)
3. Described pop operation in O(1) (7)
4. Proposed using a single minimum variable for findMin(7)
5. Recognized single variable didn’t work due to re-search (7)
6. Proposed using second stack to push minimums; solved (1)
7. Proposed using second array of sorted minimums (5)
8. Recognized sorted array violates O(1) for push (4 w/o help;

5 w/ help)
9. Proposed using a tree (or other) structure to keep a

prioritized queue (3)
10. Recognized prioritized queue violates the O(1) for push (2)
11. Proposed using three fields in each node/create new data

structure with a current minimum pointer; solved (1)

In addition to our initial observations, the student able to modify
the standard stack data structure was the only student who
described the fields and pointers in the nodes of a linked list.

4.1 Bloom’s Taxonomy
Using the revised Bloom’s taxonomy as a controlled vocabulary
for coding and analyzing the transcripts of verbal protocols, we
were able to investigate the details of the differences between
the student mental processes. As shown in Figures 2 and 3,
problem solving is a dynamic process using several cognitive
domains in order to reach a solution, and the use of the
cognitive domains varies with a student’s ability to solve a
complex problem. These figures show the overall timeline of
where students spent their time. The student with the least
successful solution never used the apply cognitive domain, and
s/he used the create domain only once (see Figure 2), whereas, a
student reaching the correct solution used the create domain
three times and the apply domain five times in the same 12
minutes and 50 seconds (see Figure 3). However, this student’s
overall time spent solving the problem was 31 minutes.

Time (minutes)

Remember

Understand

Apply

Analyze

Evaluate

Create

1 2 3 4 1265 7 8 9 10 110

Figure 2 Timeline of the Dynamic Use of Bloom’s Cognitive
Domains for the Least Successful Solution to the Problem

Time (minutes)

Remember

Understand

Apply

Analyze

Evaluate

Create

1 2 3 4 1265 7 8 9 10 110

Figure 3 Timeline of the Dynamic Use of Bloom’s Cognitive

Domains for a Successful Solution to the Problem

Kõige kehvem lahendaja
Väga hilja üritab midagi luua!

I

I I

I

I
II

1
2
3
4
5
6

:3
0

2:
30

4:
30

8:
00

9:
00

9:
30

11
:0

0

13
:3

0

15
:0

0

16
:0

0

17
:0

0

19
:3

0

20
:3

0

21
:3

0

22
:3

0

24
:0

0

25
:0

0

27
:0

0

27
:3

0

28
:0

0

28
:3

0

30
:0

0

Time (minutes:seconds)

B
lo

o
m

's

T
a
x
o

n
o

m
y

Figure 1 Overall Trend and Inter-Rater Reliability for the Classification of Cognitive Processes Reaching a Correct Solution.

problem, worked through examples, engaged in solution
monitoring, and progressed toward the solution with the help of
the interviewer. The analysis of the seven transcripts revealed
the following:
• 4 out of 7 designed or wrote on paper
• 4 out of 7 expressed interest in writing code
• 6 out of 7 worked examples and monitored solutions
• 3 out of 7 required outside help/hints to progress

In addition to these insights, we found a pattern in the starting
place and use of a data structure in the progression toward a
solution, and the further a student progressed correlated to these
insights. Less than 50% of the students described the details of
the stack, and only one described the nodes in a linked list. All
students began solving the problem of finding the minimum
value in constant time, O(1), by proposing the simplest data
structure to hold the minimum value, i.e. a single variable, and
every student understood why this solution did not work. After
realizing a single variable will not work, one student proposed
using a second stack of minimum values, while five of the seven
proposed using a second array with the minimum values sorted.
The student proposing the second stack with minimum values
solved findMinimum() in O(1) without ever mentioning sorted
values, which is unnecessary and violates O(1), or without
making any references to new in the problem statement. Three
students did refer to new in the problem statement, and one
student thought “outside the box” in order to modify the
standard stack learned in class to find the minimum in O(1),
whereas the student with the other correct solution created a
second familiar data structure. Below, we present different
features of the problem-solving process for the given problem,
the number in the parentheses indicating how many of the 7
transcripts contained the following features in the solution:

1. Proposed using a stack (7)
1.1. Proposed using a linked list (2)

1.1.1. Described the nodes, i.e. pointers (1)
1.2. Proposed using an array (1)

2. Described push operation in O(1) (7)
3. Described pop operation in O(1) (7)
4. Proposed using a single minimum variable for findMin(7)
5. Recognized single variable didn’t work due to re-search (7)
6. Proposed using second stack to push minimums; solved (1)
7. Proposed using second array of sorted minimums (5)
8. Recognized sorted array violates O(1) for push (4 w/o help;

5 w/ help)
9. Proposed using a tree (or other) structure to keep a

prioritized queue (3)
10. Recognized prioritized queue violates the O(1) for push (2)
11. Proposed using three fields in each node/create new data

structure with a current minimum pointer; solved (1)

In addition to our initial observations, the student able to modify
the standard stack data structure was the only student who
described the fields and pointers in the nodes of a linked list.

4.1 Bloom’s Taxonomy
Using the revised Bloom’s taxonomy as a controlled vocabulary
for coding and analyzing the transcripts of verbal protocols, we
were able to investigate the details of the differences between
the student mental processes. As shown in Figures 2 and 3,
problem solving is a dynamic process using several cognitive
domains in order to reach a solution, and the use of the
cognitive domains varies with a student’s ability to solve a
complex problem. These figures show the overall timeline of
where students spent their time. The student with the least
successful solution never used the apply cognitive domain, and
s/he used the create domain only once (see Figure 2), whereas, a
student reaching the correct solution used the create domain
three times and the apply domain five times in the same 12
minutes and 50 seconds (see Figure 3). However, this student’s
overall time spent solving the problem was 31 minutes.

Time (minutes)

Remember

Understand

Apply

Analyze

Evaluate

Create

1 2 3 4 1265 7 8 9 10 110

Figure 2 Timeline of the Dynamic Use of Bloom’s Cognitive
Domains for the Least Successful Solution to the Problem

Time (minutes)

Remember

Understand

Apply

Analyze

Evaluate

Create

1 2 3 4 1265 7 8 9 10 110

Figure 3 Timeline of the Dynamic Use of Bloom’s Cognitive

Domains for a Successful Solution to the ProblemEdukas lahendaja
Proovib juba varakult midagi välja mõelda

Minu enda mõttekäik
• Proovime kõigepealt lihtsalt seda meelde jätta…

• OK, pop() puhul oleks eelmist vaja.

• Aga, hmm, äkki jätaks vanu meelde, et neil on siis ka oma
magasin (või viited esialgsesse, ah, teeme lihtsalt praegu)

• Kas siis tõesti kehtib see, et kui eemaldan element
mõlemast stack’ist, siis ta ongi ülejäänud stack’i vähim?

• JAAAAA, ahaaaaa, nad on ju meil sünkroonis, see ongi
see invariant, jne…

Create!

Evaluate/
Analyze

Mina seda kohe
algpunktis ei näeks!

Using Unstructured Practice plus Reflection to Develop
Programming/Problem-Solving Fluency

Cruz Izu
The University of Adelaide

Adelaide, Australia
cruz.izu@adelaide.edu.au

Brad Alexander
The University of Adelaide

Adelaide, Australia
bradley.alexander@adelaide.edu.au

ABSTRACT
This paper describes a problem-solving course for second-year un-
dergraduate students, designed to foster programming �uency, and
explores the factors associated with the acquisition of that �uency.
The course introduces algorithmic techniques such as brute force,
recursion, dynamic programming and graph algorithms. The course
structure revolves around repeated practice: students are required
to apply programming skills using many small but challenging cod-
ing problems, combined with re�ection reports and journal writing
to document their thoughts and guide their design.

Progress is assessed by three practical examinations where stu-
dents solve a graduated series of small open-ended programming
challenges under time constraints. Challenges of this type are of-
ten used in technical interviews in industry and can be viewed as
one indicator of programming �uency and problem-solving abil-
ity. However, while there is a progression in the complexity of
problems that students are able to attempt during the course, it is
not clear which factors are the strongest contributors to students’
performance at practical exams.

This work uses a large ensemble of symbolic regression models
to identify factors that related strongly to problem-solving per-
formance. Through this stochastic analysis we are able to identify
which factors are most consistently predictive of exam performance.
To help validate these �ndings we conduct a broad analysis of coded
re�ections. It is hoped these �ndings will help identify pre-cursor
skills and behaviours that can be the target of future interventions.

CCS CONCEPTS
• Social and professional topics → Computing education;

KEYWORDS
programming; problem solving; practice; stochastic analysis
ACM Reference Format:
Cruz Izu and Brad Alexander. 2018. Using Unstructured Practice plus Re-
�ection to Develop Programming/Problem-Solving Fluency. In ACE 2018:
20th Australasian Computing Education Conference, January 30-February
2, 2018, Brisbane, QLD, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3160489.3160496

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6340-2/18/01. . . $15.00
https://doi.org/10.1145/3160489.3160496

1 INTRODUCTION
A software engineer’s role is to design and develop digital solutions
for real problems. This role requires skills to abstract from a real
problem, identify patterns, and apply problem solving techniques
to develop a digital solution. For many CS/SE students learning
these solution-building skills, whilst still learning to code, is chal-
lenging [10]. Introductory CS courses frequently try to structure
the problem solving process by instructing students to �rst design
an algorithm before coding the solution. However, the reality is
that undergraduate students often progress straight to coding, pro-
ducing a design on-the-�y and only move to re�ne the solution
when the code fails to produce the expected output[4, 7]. Often
it is only when projects become larger and more challenging that
students are motivated by the need for a design process[13, 19].

This lack of impetus to develop a robust problem solving process
is further compounded by assessment modes which set program-
ming tasks that exercise new concepts recently presented (e.g. a new
data structure or algorithmic technique) in ways that are clearly
implied by the context. This concept/practice pairing contrasts with
the process of solving realistic problems which requires developers
to select or synthesise data structures and algorithms using the
full gamut of knowledge and skills they have acquired. Exercising
this process in an educational setting would require students to be
presented with unstructured practice, uncoupled from the implicit
context of course content recently presented.

In this work we describe an approach to improving programming
�uency and motivating a design process for CS students. A new
course was designed to improve programming �uency through
intensive practice (three to �ve algorithmic problems per week) on
a choice of graduated, open-ended practice problems, combined
with self-re�ection on students’ practice and process. During the
�rst delivery of the new course, we saw an (expected) increase in
the ability to solve problems, we also noticed marked patterns in
student re�ections stressing a new appreciation for the importance
of software design.

The work here incorporates some aspects from earlier proposals.
In work aimed at �rst years, Astrachan[2] developed a �rst-year
course using contest problems to encourage engagement and im-
prove skills. While this intervention sca�olded a design process,
an analysis of the results was not carried out. Ginat [8] replaced
some structured practice, which he called "drill and practice", with a
range of exploratory problem solving tasks that looked at problems
from di�erent angles by examining erroneous algorithmic solutions,
comparing alternative solutions and learning from their mistakes.
More broadly, the aims of our course are strongly aligned with work
describing practices that promote meta-cognition[14, 15, 17] with a
focus on re�ection, strategy, intrinsic-interest and self-e�cacy. Of

25

Kuidas siis ikkagi õpetada?

https://dl.acm.org/citation.cfm?id=3160496

Problem Coding Practice
• Kursus kestis 12 nädalat

• Kohustuslik bakalaureuses (>100 tudengit)

• Iga nädal valivad 3-5 ülesannet pakutud 8 ülesandest.

• Üks eeltest ja 3 eksamit (4, 8 ja 12 nädal)

• Eksamite järel on vaja täita eneseanalüüsi vorme.

• Aine on üsna detailselt kirjeldatud ja ülesannete nimed
TopCoderi andmebaasis nädalate kaupa.

ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Cruz Izu and Brad Alexander

coding in which sub-themes identi�ed were grouped into clear
categories by agreement of both authors. Most re�ections where
short and focused in one or two themes. Overall, they appeared
quite authentic and in many cases insightful.

4.1 Re�ection 1 - Early lessons
Table 1 summarises student multiple-choice selections for the �rst
report. As expected, only 6% of the students felt very well prepared
for the exam, the majority feeling somewhat prepared. The main
factor perceived as needing improvement is thinking about the
algorithm (54%) followed by thinking about the problem description
(25%), with coding being the third and last factor (21%).

When asked to identify time sinks that adversely impacted exam
performance students nominated the need to rethink the algorithm
(59%) as well as having to rethink their code (47%) as the main two
issues. As expected, �xing minor coding errors was another time
sink (42%), while 35% of students had problems understanding the
question.

Re�ection 1 - Q1: a summary of the topics cited in the �rst
re�ective question is shown in Figure 6. The themes cover the
three steps of developing a solution: understanding the problem,
designing and coding the solution, plus simple exam techniques.

Two prevalent themes were the need to prepare better for the
exam and the need to design a solution before coding. For exam
preparation, students were aware of the need to know basic algo-
rithms and to be exposed to a range of problems they can draw
from. Also, more coding practice was observed to help improve
speed, and to get used to working under pressure to produce a
working solution in a limited time.

Table 1: Summary of Reflection1

Level of preparedness

very well quite
well somewhat not at all

6% 33% 53% 8%

Need to improve

think about the
description

think about
algorithm coding

25% 54% 21%

Time sinks

none
question
compre-
hension

have to
rethink

algorithm

Have to
rethink
code

3% 35% 59% 47%

coding
errors

other
tech
errors

chose wrong
data structure

other
human
factors

42% 23% 13% 21%

Figure 6: Lessons learned - week4

Coding the solution was the third theme. Some students strug-
gled with C++ features such as type-conversion between string
and integer types, or getting the syntax correct for calls to STL
functions.

Re�ection 1 - Q2: the themes identi�ed by students when they
have a productive day are summarised in Figure 7. For this question
some students described multiple themes while other focused on a
single theme. The most common themes were to the need to plan
in advance and to �nd a suitable quiet place to practice. Planning
involved three aspects:

• Make a schedule or list : have a written list of tasks to be
completed during that work period.

• Set goals: students liked to have clear targets and see progress
toward those targets, e.g. crossing task o� was a great mo-
tivator. Some students planned rewards for achieving their
goals, others just wanted to clear their workload.

• Having breaks: students re�ected of the need to have breaks
to avoid burn-out; some students planned them in advance,
whilst other consider them as rewards. Most students prefer
short breaks, 10-15 minutes, often while a few take longer
breaks to go for a walk or do some exercise.

It was noted that productivity also increased by applying prob-
lem solving skills such as taking time to read and think about the
problem, brainstorming ideas with peers and knowing when they
are stuck and seek help. For example, for some students, reading
problems ahead of time meant they could think about them in their
spare time, whilst commuting or doing menial work.

With regards to the practice environment, there was variation
but there was a common sub-theme of avoiding distractionsPrime
sources of distraction were mobile phones, social media and gaming.
Thus, the best method to avoid such distractions was to turn o�
internet access or being away from other peers.

For some students a looming deadline was the main driver of pro-
ductivity. Others were more productive when they had no pressure
to �nish. A few cited how, if they are self-motivated or working of
a topic of interest, they can push themselves to be more productive.

30

Mis oli kõige kasulikum eksamiks?
Describe some insights, shortcuts or algorithmic tricks that were

most valuable to you in your exam or your practice before the exam.

Unstructured Practice + Reflection = Programming Fluency? ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

Figure 7: How to be more productive - week4

4.2 Re�ection 2- Skills developed
The list of skills cited by students when answering this re�ective
question is shown in Table 2. Although the course content focused
on algorithms, this skill is ranked second with design and planning
coming �rst, and coding skills being a close third.

As we did not provide a scale in the question, it is hard to esti-
mate the extent of perceived improvement. However, most students
described their improvement as signi�cant, and having an impact
not only on this subject but in other related courses and even on
everyday problems. A common theme on this re�ection was the
fact that many of the gains and good habits were developed due
to the volume of practice expected in the course. Also, the skills
gained were not isolated; for example: planning improved code
quality, and algorithmic thinking improved abstraction, which is
also helpful for the design phase.

Table 2: Summary of Responses to Most Developed Skill

Skill Category Description Cited

Design make a plan or write an
strategy, seek alternatives

44%

Algorithmic identify problem type,
recursion, graph algorithms

39%

Coding faster coding, C++ �uency,
better code structure

34%

Problem solving generic skills to approach
problems, self-learning

12%

Other SE Testing, documentation, team
work, communication

8%

4.3 Re�ection 3 - Changes of approach
Table 3 summarises the changes of approach described by students
at the end of the course, which mapped quite clearly into 5 areas as
shown in the Before and After descriptions. Again, software design

Table 3: Summary of changes to approach

Before After Count
Just start coding
straight away

Design my algorithm
before coding

37%

Mostly/only use brute
force

Identify best algorithmic
approach

37%

Stick to the �rst idea Look problem from
multiple perspectives

%11

Journal was a drag
Journal helps design by
keeping track of my
thoughts

7%

Not a fan of recursion Con�dent to use
recursion when needed

5%

or planning were named as the main change for 37% of the students,
as well as being able to use a wide range of algorithmic approaches
(37%). On the problem-solving side, a smaller number cited the
realisation that there are multiple ways to solve a problem, so you
should consider the alternatives and maybe brainstorm with your
peers.

Although some students mentioned the journal in their planning,
a small number chose this as their main change and were quite
emphatic in how useful it was to record their thoughts, not only to
support their problem solving but to remember what to code and
what needs to be documented. Conversely a small minority felt their
approach did not change that much as they already were familiar
with problem solving though the training for external programming
competitions and/or their own learning.

5 DISCUSSION
The course data and the student’s re�ection indicate the course
approach was embraced by students which committed time every
week to solve at least 3 problems. This section will analyse �rst the
impact that their intensive practice had on coding skills and coding
�uency, plus looking at other software development skills cited by
students such as design and algorithmic thinking.

Coding Skills. Early in the course some students struggled with
syntax problems and lack of �uency in the programming language
(C++). After the �rst practical exam in week 4, many students iden-
ti�ed in the �rst re�ection the need to be more familiar with C++
libraries as well as the need to implement the program in smaller
parts, keep logic separated into functions, and writing their own
test cases. By week 10, 33% they selected coding as the skill most
developed by the course, most of the students in this group felt the
improvement was signi�cant, including the exposure from peers
to neat tricks, which helped to produce shorter code. Key improve-
ments include better code structure, modularity and code reuse,
which also improved readability. Some students felt the practical
exam conditions were valuable for learning to code under time
constraints. The continual improvement of coding skills through
practice was re�ected in class performance through the course.

Factor Analysis - Coding fluency. From the factor analysis it is
clear that programming �uency in PCP is positively related to the

31

Mis tegi päeva produktiivseks?
Think back to the most productive day or week that you have recently had.
Write down the things that you did (or didn’t do) that made it productive.

Unstructured Practice + Reflection = Programming Fluency? ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

Figure 7: How to be more productive - week4

4.2 Re�ection 2- Skills developed
The list of skills cited by students when answering this re�ective
question is shown in Table 2. Although the course content focused
on algorithms, this skill is ranked second with design and planning
coming �rst, and coding skills being a close third.

As we did not provide a scale in the question, it is hard to esti-
mate the extent of perceived improvement. However, most students
described their improvement as signi�cant, and having an impact
not only on this subject but in other related courses and even on
everyday problems. A common theme on this re�ection was the
fact that many of the gains and good habits were developed due
to the volume of practice expected in the course. Also, the skills
gained were not isolated; for example: planning improved code
quality, and algorithmic thinking improved abstraction, which is
also helpful for the design phase.

Table 2: Summary of Responses to Most Developed Skill

Skill Category Description Cited

Design make a plan or write an
strategy, seek alternatives

44%

Algorithmic identify problem type,
recursion, graph algorithms

39%

Coding faster coding, C++ �uency,
better code structure

34%

Problem solving generic skills to approach
problems, self-learning

12%

Other SE Testing, documentation, team
work, communication

8%

4.3 Re�ection 3 - Changes of approach
Table 3 summarises the changes of approach described by students
at the end of the course, which mapped quite clearly into 5 areas as
shown in the Before and After descriptions. Again, software design

Table 3: Summary of changes to approach

Before After Count
Just start coding
straight away

Design my algorithm
before coding

37%

Mostly/only use brute
force

Identify best algorithmic
approach

37%

Stick to the �rst idea Look problem from
multiple perspectives

%11

Journal was a drag
Journal helps design by
keeping track of my
thoughts

7%

Not a fan of recursion Con�dent to use
recursion when needed

5%

or planning were named as the main change for 37% of the students,
as well as being able to use a wide range of algorithmic approaches
(37%). On the problem-solving side, a smaller number cited the
realisation that there are multiple ways to solve a problem, so you
should consider the alternatives and maybe brainstorm with your
peers.

Although some students mentioned the journal in their planning,
a small number chose this as their main change and were quite
emphatic in how useful it was to record their thoughts, not only to
support their problem solving but to remember what to code and
what needs to be documented. Conversely a small minority felt their
approach did not change that much as they already were familiar
with problem solving though the training for external programming
competitions and/or their own learning.

5 DISCUSSION
The course data and the student’s re�ection indicate the course
approach was embraced by students which committed time every
week to solve at least 3 problems. This section will analyse �rst the
impact that their intensive practice had on coding skills and coding
�uency, plus looking at other software development skills cited by
students such as design and algorithmic thinking.

Coding Skills. Early in the course some students struggled with
syntax problems and lack of �uency in the programming language
(C++). After the �rst practical exam in week 4, many students iden-
ti�ed in the �rst re�ection the need to be more familiar with C++
libraries as well as the need to implement the program in smaller
parts, keep logic separated into functions, and writing their own
test cases. By week 10, 33% they selected coding as the skill most
developed by the course, most of the students in this group felt the
improvement was signi�cant, including the exposure from peers
to neat tricks, which helped to produce shorter code. Key improve-
ments include better code structure, modularity and code reuse,
which also improved readability. Some students felt the practical
exam conditions were valuable for learning to code under time
constraints. The continual improvement of coding skills through
practice was re�ected in class performance through the course.

Factor Analysis - Coding fluency. From the factor analysis it is
clear that programming �uency in PCP is positively related to the

31

8. Nädal: Mis on arenenud?
What software development skills do you think you have

developed most as a result of this course and by how much?

Unstructured Practice + Reflection = Programming Fluency? ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

Figure 7: How to be more productive - week4

4.2 Re�ection 2- Skills developed
The list of skills cited by students when answering this re�ective
question is shown in Table 2. Although the course content focused
on algorithms, this skill is ranked second with design and planning
coming �rst, and coding skills being a close third.

As we did not provide a scale in the question, it is hard to esti-
mate the extent of perceived improvement. However, most students
described their improvement as signi�cant, and having an impact
not only on this subject but in other related courses and even on
everyday problems. A common theme on this re�ection was the
fact that many of the gains and good habits were developed due
to the volume of practice expected in the course. Also, the skills
gained were not isolated; for example: planning improved code
quality, and algorithmic thinking improved abstraction, which is
also helpful for the design phase.

Table 2: Summary of Responses to Most Developed Skill

Skill Category Description Cited

Design make a plan or write an
strategy, seek alternatives

44%

Algorithmic identify problem type,
recursion, graph algorithms

39%

Coding faster coding, C++ �uency,
better code structure

34%

Problem solving generic skills to approach
problems, self-learning

12%

Other SE Testing, documentation, team
work, communication

8%

4.3 Re�ection 3 - Changes of approach
Table 3 summarises the changes of approach described by students
at the end of the course, which mapped quite clearly into 5 areas as
shown in the Before and After descriptions. Again, software design

Table 3: Summary of changes to approach

Before After Count
Just start coding
straight away

Design my algorithm
before coding

37%

Mostly/only use brute
force

Identify best algorithmic
approach

37%

Stick to the �rst idea Look problem from
multiple perspectives

%11

Journal was a drag
Journal helps design by
keeping track of my
thoughts

7%

Not a fan of recursion Con�dent to use
recursion when needed

5%

or planning were named as the main change for 37% of the students,
as well as being able to use a wide range of algorithmic approaches
(37%). On the problem-solving side, a smaller number cited the
realisation that there are multiple ways to solve a problem, so you
should consider the alternatives and maybe brainstorm with your
peers.

Although some students mentioned the journal in their planning,
a small number chose this as their main change and were quite
emphatic in how useful it was to record their thoughts, not only to
support their problem solving but to remember what to code and
what needs to be documented. Conversely a small minority felt their
approach did not change that much as they already were familiar
with problem solving though the training for external programming
competitions and/or their own learning.

5 DISCUSSION
The course data and the student’s re�ection indicate the course
approach was embraced by students which committed time every
week to solve at least 3 problems. This section will analyse �rst the
impact that their intensive practice had on coding skills and coding
�uency, plus looking at other software development skills cited by
students such as design and algorithmic thinking.

Coding Skills. Early in the course some students struggled with
syntax problems and lack of �uency in the programming language
(C++). After the �rst practical exam in week 4, many students iden-
ti�ed in the �rst re�ection the need to be more familiar with C++
libraries as well as the need to implement the program in smaller
parts, keep logic separated into functions, and writing their own
test cases. By week 10, 33% they selected coding as the skill most
developed by the course, most of the students in this group felt the
improvement was signi�cant, including the exposure from peers
to neat tricks, which helped to produce shorter code. Key improve-
ments include better code structure, modularity and code reuse,
which also improved readability. Some students felt the practical
exam conditions were valuable for learning to code under time
constraints. The continual improvement of coding skills through
practice was re�ected in class performance through the course.

Factor Analysis - Coding fluency. From the factor analysis it is
clear that programming �uency in PCP is positively related to the

31

Lõpus: Kas lähenemine on muutunud?
With the aid of two contrasting examples (before and after) briefly describe how
your approach to algorithmic problem solving has changed during this course.

Are these changes, if any, likely to persist?

Järeldused

Sügav Programmeerimine
• Sügav õppimine vajab mingil viisil sisemise motivatsiooni

loomist ja selleks peab inimene ka uskuma sellesse, et saab
hakkama! AKT aines on väga palju tööd vaja teha, et nad
usuks endasse, aga…

• Üks asi on olla motiveeritud sügavalt õppida, aga teine asi on
päriselt õppida sügavalt programmeerida. Isegi motiveeritud
õppijad, kes panevad meeletu hulk aega ainesse, küsivad
liiga palju näidislahendusi. Eksamil on meil ikkagi erinev
ülesanne. Siis paluvad ka selle näidislahendusi…

• Kuidas motiveerida neid näidete assimileerimise asemel
põhiprintsiipe selgeks teha?

Järeldused artiklitest
• Meil võib kasuks olla natuke selgemalt mõelda, mis on iga

aine roll programmeerimise mõttetasandite maatriksis.
Mõned mõtted selle kohta järgmistel slaididel.

• Sügavam programmeerimise oskus on ikkagi väga raske
õpiväljundina fikseerida. Head probleemilahendajad
opereerivad ka oluliselt varem kõrgemal mõtlemistasandil.

• Me peame rohkem tähelepanu pöörama probleemi
lahendamise oskuse õpetamise. Sealjuures on
ensereflektsioon oluline. Kui eesmärk on mõjutada seda,
kuidas nad probleemidele lähenevad, siis ei piisa ainult
selles, et “las nad lahendavad rohkem ülesandeid”.

Mis on meie kursuste rollid?
Ma enne mõtlesin, et AKT liigub loomise teljes, aga

tegelikult on ta pigem arusaamist arendav aine!

 164

Although a review of the literature reveals a wide range of
possible candidates, only Bloom’s taxonomy of the cognitive
domain appears to be widely used in computer science course
and assessment design. Its main strengths are that the levels are
reasonably easy to understand and there is a developing
literature, reviewed above, on how to use it to devise test items.
Thus we felt it would form the most natural basis for our
proposed taxonomy.

We used the revised version of Bloom’s taxonomy [6] which
responded to problems with the linear approach at the higher
levels. It provides a level of creation (Higher Application) which
requires competency at all the previous levels and one that does
not (Create). In order to visualize this distinction and the semi-
independent skills of reading and writing program code, our
taxonomy employs a two dimensional matrix with an adaptation
of Bloom’s taxonomy which is presented in Figure 2.

Figure 2. A graphical presentation of the two dimensional

adaptation of Bloom’s taxonomy.

The dimensions of the matrix represent the two separate ranges
of competencies: the ability to understand and interpret an
existing product (i.e. program code), and the ability to design
and build a new product. Levels related to interpretation are
placed on the horizontal axis and levels related to generation are
placed on the vertical axis, with the lowest levels at the lower
left corner. The names of the levels are from the revised version
of Bloom’s, as we feel they are sufficiently unambiguous. It is
understood that students traverse each axis in strict sequence.
For example, it is not possible to begin to do synthesis (Create)
until there is some degree of competency through the Apply
Level.

6.1.1 Applying the taxonomy – traversing the

matrix
The matrix should be especially useful for instructors needing a
marking grid for their students. Also it rather clearly illustrates
all the different learning paths students may take, as discovered
in recent work by Lahtinen [37].

Different students take different "learning paths" in the matrix
taxonomy. For instance, when a student learns a new
programming concept he first achieves the knowledge of this
concept. At that point the student is in the cell (the state of)
"none/Remember" shown in Figure 2. If this student continues
with learning by imitating a ready example of a program but
without deep understanding of the concept, they will achieve

the state "Apply/Remember", i.e. applying/trying to apply the
concept without real understanding, with trial and error. This
behaviour is illustrated in Figure 3. If instead of imitating, the
student decides to first find more information on this concept, as
from a book, they might proceed to the cell "none/Understand"
to the right of the initial cell. This means that the student is not
yet able to produce program code, but he might already
understand the meaning behind this concept.

A competent practitioner of a concept would be placed in the
cell "Create/Evaluate", which means that he is able to perform at
all the competency levels in the matrix. This can also be
identified as the level Higher Application [27] and can be
reached through different paths as shown in Figure 6.

However, there are students who attain only some of the
competencies. For instance, the theoretical students identified in
a cluster analysis study [37] may be placed in the cell
"none/Evaluate" which means that they are able to read program
code, analyze, and even evaluate it, but cannot yet design a
solution or produce program code. This is not the most common
pathway for students to follow, but these students have only
proceeded in the horizontal direction as shown in Figure 4.

The same study revealed another group, called the practical
students, who could be placed in the cell "Create/Understand" of
the matrix. Being in that cell would indicate the ability to apply
and synthesize without the ability to analyse or evaluate even
their own program code. This behaviour is illustrated in Figure
5. The problem for these practical students is in not being able
to debug their own solutions when they encounter errors.

Figure 3. A student trapped in trial and error approach

Prog+OOP
AKT

Juhuu, see
töötab!

Ma tean, et
minu kood on

korrektne!

Suurem küsimus on algoritmika juures!
Kas näiteks harjutuste aines võtta peamine kohustus

õpetada just probleemi lahendamise oskusi?

 164

Although a review of the literature reveals a wide range of
possible candidates, only Bloom’s taxonomy of the cognitive
domain appears to be widely used in computer science course
and assessment design. Its main strengths are that the levels are
reasonably easy to understand and there is a developing
literature, reviewed above, on how to use it to devise test items.
Thus we felt it would form the most natural basis for our
proposed taxonomy.

We used the revised version of Bloom’s taxonomy [6] which
responded to problems with the linear approach at the higher
levels. It provides a level of creation (Higher Application) which
requires competency at all the previous levels and one that does
not (Create). In order to visualize this distinction and the semi-
independent skills of reading and writing program code, our
taxonomy employs a two dimensional matrix with an adaptation
of Bloom’s taxonomy which is presented in Figure 2.

Figure 2. A graphical presentation of the two dimensional

adaptation of Bloom’s taxonomy.

The dimensions of the matrix represent the two separate ranges
of competencies: the ability to understand and interpret an
existing product (i.e. program code), and the ability to design
and build a new product. Levels related to interpretation are
placed on the horizontal axis and levels related to generation are
placed on the vertical axis, with the lowest levels at the lower
left corner. The names of the levels are from the revised version
of Bloom’s, as we feel they are sufficiently unambiguous. It is
understood that students traverse each axis in strict sequence.
For example, it is not possible to begin to do synthesis (Create)
until there is some degree of competency through the Apply
Level.

6.1.1 Applying the taxonomy – traversing the

matrix
The matrix should be especially useful for instructors needing a
marking grid for their students. Also it rather clearly illustrates
all the different learning paths students may take, as discovered
in recent work by Lahtinen [37].

Different students take different "learning paths" in the matrix
taxonomy. For instance, when a student learns a new
programming concept he first achieves the knowledge of this
concept. At that point the student is in the cell (the state of)
"none/Remember" shown in Figure 2. If this student continues
with learning by imitating a ready example of a program but
without deep understanding of the concept, they will achieve

the state "Apply/Remember", i.e. applying/trying to apply the
concept without real understanding, with trial and error. This
behaviour is illustrated in Figure 3. If instead of imitating, the
student decides to first find more information on this concept, as
from a book, they might proceed to the cell "none/Understand"
to the right of the initial cell. This means that the student is not
yet able to produce program code, but he might already
understand the meaning behind this concept.

A competent practitioner of a concept would be placed in the
cell "Create/Evaluate", which means that he is able to perform at
all the competency levels in the matrix. This can also be
identified as the level Higher Application [27] and can be
reached through different paths as shown in Figure 6.

However, there are students who attain only some of the
competencies. For instance, the theoretical students identified in
a cluster analysis study [37] may be placed in the cell
"none/Evaluate" which means that they are able to read program
code, analyze, and even evaluate it, but cannot yet design a
solution or produce program code. This is not the most common
pathway for students to follow, but these students have only
proceeded in the horizontal direction as shown in Figure 4.

The same study revealed another group, called the practical
students, who could be placed in the cell "Create/Understand" of
the matrix. Being in that cell would indicate the ability to apply
and synthesize without the ability to analyse or evaluate even
their own program code. This behaviour is illustrated in Figure
5. The problem for these practical students is in not being able
to debug their own solutions when they encounter errors.

Figure 3. A student trapped in trial and error approach

Prog+OOP
AKT

A&A

Ha
rju

tu
se

d

–Ursula Fuller et al.

“Studying processes and problem solutions is very
central to, if not the essence of, computer science.
One could say that solving problems and producing
an effective and efficient solution is the core goal of

a computer science professional.”

Kui niimoodi mõelda ainete eesmärkide
peale, siis peab muidugi rohkem resursse

panustama Harjutuste ainesse.

